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Abstract
Molecular activation in cellular microdomains is usually characterized by a forward binding
rate, which is the reciprocal of the arrival time of a ligand to a key target. Upon chemical
interactions or conformational changes, a Brownian ligand may randomly switch between
different states, and when target activation is possible in a specific state only, switching can
significantly alter the activation process. The main goal of this paper is to study the mean time
for a switching ligand to activate a small substrate, modelled as the time to exit a microdomain
through a small absorbing window on the surface. We present the equations for the mean
sojourn times the ligand spends in each state, and study the escape process with switching
between two states in dimension one and three. When the ligand can exit in only one of the two
states, we find that switching always decreases its sojourn time in the state where it can exit.
Moreover, the fastest exit is obtained when the ligand diffuses most of the time in the state with
the maximal diffusion coefficient, although this may imply that it spends most of the time
‘hidden’ in the state where it cannot exit. We discuss the physical mechanisms responsible for
this apparent paradox. In dimension three we confirm our results with Brownian simulations.
Finally, we suggest possible applications in cellular biology.

1. Introduction

The physiological response of cells to internal or external
stimuli is often initiated by the binding of diffusing
ligands (molecules, proteins, ions) to specific target activator
proteins [1–6]. The time response depends on the mean
time for the diffusing ligand to find these activators in the
complex cellular environment [6–12]. The mean time for a
diffusing ligand to find a small target molecule in a confined
environment, known as the narrow escape time (NET), depends
on the structure and geometry of the microdomain, and on the
shape of the target. Explicit expressions for the NET in various
situations are given in [13–21]. The NET has been used to
derive statistical properties of chemical reactions with a few
diffusing molecules [12], to obtain estimates for the probability
and the arrival time of viral particles to nuclear pores [22, 23],
to study receptor trafficking at synaptic membranes [24, 25],
or to estimate the rate of cyclic GMP hydrolysis in rod
photoreceptors [26].

However, when diffusing ligands switch between different
states due to conformational changes or reversible chemical

interactions with partners, in which case the switching rate
depends on the concentration of these molecules, it is necessary
to incorporate such situations into computations of the NET,
especially when target activation is possible only in a specific
state. For example, diffusing enzymes in the cytoplasm switch
between an inactive and active state; in the nucleus, activation
of a small DNA-site by a diffusing transcription factor (TF) is
highly controlled by the interactions with various regulatory
proteins changing the affinity of the TF to its promoter
site [27–31].

Stochastic modellings of TF capture some of the
complexity of the bio-molecular system. Usually the TF
motion is approximated by the one of the centre of mass,
but its segment motion and interactions with a target via
appropriate residues is still not at hand. In the past,
diffusion-limited chemical reactions have been studied when
either the ligands or the target stochastically switch between
different conformations [7, 32–36], and interestingly, it was
found that the dynamics of the reactions differ between
both scenarios. Gated ligands can be effectively modelled
by a reduction in the reactivity, while for gated target all
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Figure 1. Schematic representation of a diffusing Brownian ligand
that randomly switches between two states 1 (continuous line) and 2
(dashed line). In state 2, the ligand is reflected all over the boundary
of the microdomain �, while in state 1 it is absorbed at ∂�a.

ligands become correlated, and the survival probability of
the target can change from exponential to non-exponential
behaviour [33, 34, 37]. In a scenario where the target is
surrounded by a fluctuating potential barrier, a resonant-like
phenomena was found where the mean activation time has
a minimum at a specific fluctuation rate [38, 39]. Recently,
certain classes of intermittent search processes were introduced
and analysed [40–44], in which a ligand searches for a hidden
target by stochastically switching between a fast ballistic and
a slow diffusive phase, while the target can only be found in
the diffusing phase. Interestingly, it was shown that switching
decreases the search time, and, similar to a target activation
over a fluctuating barrier, there are optimal switching rates that
minimize the search time.

Here we study the gated narrow escape time (GNET),
which is the time for a diffusing ligand that stochastically
switches between different states with different diffusion
coefficients to exit a microdomain � through a small window.
We focus on a switching process that occurs between two states
(1, 2) with diffusion coefficients (D1, D2) (see figure 1), where
switching is described by

1
k12�
k21

2,

with Poissonian rates (k12, k21). We investigate the cases
when the ligand can exit only in state 1, and in both states.
To estimate the GNET, we do not use the equations for the
mean first passage time, but we start from the equations
for the sojourn times the ligand spends in each state before
exiting, which provides a more detailed description of the
switching process. The GNET is also related to intermittent
search processes, where some switching strategies between
different states lead to some minimal search time to find a
target [40–43].

When the ligand can exit only in state 1, all the mean exit
and sojourn times can be expressed as a function of the sojourn
time u1(1) the ligand spends in state 1 conditioned on starting
in state 1. If the domain � is the one-dimensional interval
(0, L), we find here that the exact solution u(1) for the exit
time starting initially in state 1 is (see equation (17))

u(1) =
(

1 + k12

k21

)
u1(1) =

(
1 + k12

k21

)
L2

3D1

(
k21 D1

k12 D2 + k21 D1

+ 3k12 D2

k12 D2 + k21 D1
f

(
k12L2

D1
+ k21L2

D2

))

where f (x) = coth
√

x√
x

− 1
x . In dimension three, we obtain

the new asymptotic formula for the GNET u(1) is (see
equation (46))

u(1) =
(

1 + k12

k21

)
u1(1) =

(
1 + k12

k21

)

×
⎧⎨
⎩
τ1, l1 � 1 or l2 � l1

|�|
|∂�a|√D1k12

, l1 � 1 and
√

l1 � l2

where τ1 is the usual NET of a ligand that diffuses in state
1 without switching, |∂�a| is the surface of the absorbing
window, which is of the order a2, |�| is the volume of the
domain, and l1 = k12a2

D1
and l2 = k21a2

D2
are the effective

parameters that control the behaviour of u(1). As we will see,
our analysis reveals that switching not only drastically affects
the exit time, but also, only for D2 > D1, the GNET u(1) has
a minimum as a function of the switching rates. Interestingly,
if switching occurs very fast, we find that a ligand can exit
almost as fast as possible, although it spends most of the time
in state 2 where exit is not possible, a phenomena that is related
to the behaviour of the ligand in the boundary layer of the
small absorbing site. When the ligand can exit in both states,
our result for the exit time u(1) in dimension three is (see
equation (57))

u(1) = τ1
1 + (k12 + k21)τ2

1 + k12τ1 + k21τ2
,

where τ2 = D1/D2τ1 is the usual NET for a ligand that diffuses
in state 2 without switching. Finally, we will suggest possible
applications of our results in cellular biology.

2. The equations for the sojourn times

The dynamics of a Brownian particle diffusing in a bounded
domain � and switching between N independent states n =
1, . . . , N can be approximated by discrete stochastic dynamics

Xn(t +�t)

=
{

Xm(t) w.p. kmn�t, n �= m

Xm(t)+ √
2Dm�tη w.p. 1 − k+

m�t, n = m

(1)

where Xn(t) is the position of the particle in state n, η a
Gaussian variable, Dn the diffusion coefficient in state n, knm

the transition rate from state n to m (knn = 0), and kn+ =∑N
i=1 kni is the cumulative rate to switch from state n to any

other state.
To further characterize the dynamics, we consider the

transition probability density function p(x, n, t | y,m, t ′) to
find a particle that is initially at time t ′ in state m at position
y, and at a later time t in state n at position x. During the
infinitesimal time interval τ = t − t ′ and to first order in
τ , the dynamics can be decomposed into two distinct events
(see equation (1)): first, switching from a state n to a different
state m without diffusing, and second, diffusion from position
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x to position y without switching. From this we obtain for the
infinitesimal transition probability density function

p(x, n, t ′ + τ | y,m, t ′) = kmnτδ(x − y)

+ δnm(1 − τkm+)(1 + τDm�x)δ(x − y)

= (1 − τkm+)δnmδ(x − y)+ τ (kmn + δnm Dm�x)

× δ(x − y)+ O(τ 2). (2)

To derive the forward Fokker–Planck equation we use equa-
tion (2) together with the Chapman–Kolmogorov equa-
tion [45, 46] and obtain

p(x, n, t + τ | y,m, t ′) =
∫
�

dz
N∑

i=1

p(x, n, t + τ | z, i, t)

× p(z, i, t | y,m, t ′) = p(x, n, t | y,m, t ′)(1 − τkn+)

+ τ

N∑
i=1

kin p(x, i, t | y,m, t ′)

+ τDn�x p(x, n, t | y,m, t ′)+ O(τ 2).

Taking the limit τ → 0 gives the forward Fokker–Planck
equation

∂p(x, n, t | y,m, t ′)
∂ t

=
N∑

i=1

kin p(x, i, t | y,m, t ′)

− kn+ p(x, n, t | y,m, t ′)+ Dn�x p(x, n, t | y,m, t ′),
(3)

with initial condition

p(x, n, t ′ | y,m, t ′) = δnmδ(x − y).

To derive the backward equation we start from the relation
(t > t ′ + τ > t ′)

p(x, n, t | y,m, t ′) =
∫

dz
N∑

i=1

p(x, n, t | z, i, t ′ + τ )

× p(z, i, t ′ + τ | y,m, t ′), (4)

and, by inserting equation (2) and taking the limit τ → 0, we
obtain the backward Fokker–Planck equation

∂p(x, n, t | y,m, t ′)
∂ t ′ = −

(
Dm�y p(x, n, t | y,m, t ′)

−
N∑

i=1

kmi(p(x, n, t | y,m, t ′)− p(x, n, t | y, i, t ′))
)
.

(5)

For a particle initially at time t ′ = 0 in state m at position y,
the mean sojourn time un(y,m) it spends in state n is

un(y,m) =
∫
�

dx

∫ ∞

0
dt p(x, n, t | y,m, 0). (6)

Because the transition probability p(x, n, t | y,m, t ′) depends
only on t − t ′, by integrating the backward equation we obtain
for un(y,m) the coupled system of equations

Dm�un(y,m)−
N∑

i=1

kmi(un(y,m)− un(y, i)) = −δnm, (7)

where the boundary conditions depend on the initial state m.
For each value n = 1, . . . , N , equation (7) constitutes a
closed system of equations that can be solved independently.
However, it is sufficient to solve the equations only for a
specific value of n, e.g. n = 1, because the solutions un(y,m)
for n > 1 can be obtained from the solutions u1(y,m) by linear
transformations. By averaging un(y,m) over a uniform spatial
distribution we obtain the mean sojourn times

un(m) = 1

|�|
∫
�

un(y,m) dy. (8)

Finally, from equation (7) we find that the exit times u(y,m) =∑N
n=1 un(y,m) satisfy the coupled system of the mean first

passage time equations (see also [47])

Dm�u(y,m)−
N∑

i=1

kmi(u(y,m)− u(y, i)) = −1. (9)

To conclude this part, we emphasize that to derive the sojourn
time in state n, conditioned on starting in a specific state m,
one has to consider the sojourn times in state n conditioned on
starting in any other state.

3. Gated narrow escape with exit only in state 1

From now on we will study the sojourn time equations for
a diffusing ligand switching between two states 1,2 and with
rates k12, k21 and diffusion constants D1, D2 (see figure 1).
To estimate the mean sojourn times the particle spends in the
two states before hitting the absorbing surface patch ∂�a, we
analyse equation (7) for u1(x, 1) and u1(x, 2), given by

D1�u1(x, 1)− k12(u1(x, 1)− u1(x, 2)) = −1

D2�u1(x, 2)− k21(u1(x, 2)− u1(x, 1)) = 0,
(10)

and u2(x, 1) and u2(x, 2) satisfy equations that are obtained
by interchanging 1 ↔ 2 in (10). We will first study these
equations when the ligand is absorbed at ∂�a in state 1 while
it is reflected everywhere on the boundary in state 2, and
afterwards consider a ligand that is absorbed at ∂�a in both
states.

For a switching ligand absorbed at ∂�a in state 1 and
reflected in state 2 the boundary conditions for equation (10)
are

u1(x, 1) = 0, x ∈ ∂�a,

∂u1(x, 1)

∂n
= 0, x ∈ ∂�r,

∂u1(x, 2)

∂n
= 0, x ∈ ∂�.

The sojourn times u2(x, 1) and u2(x, 2) are obtained from
u1(x, 1) and u1(x, 2) through the linear transformation

(
u2(x, 1)
u2(x, 2)

)
= k12

k21

(
1 0
0 1

) (
u1(x, 1)
u1(x, 2)

)
+

(
0
1

k21

)
. (11)
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Figure 2. The sojourn time u1(1) obtained from equation (14) as a function of l1 and l2, and scaled by the mean first passage time τ1. In panel
(a), the continuous curve is the asymptotic limit 3/

√
l1 for l1 � 1 and

√
l1 � l2, and in panel (b), the continuous curve corresponds to the

non-switching case l1 = 0.

From equations (10) and (11) we find that the spatially
averaged sojourn times defined in equation (8) satisfy the
intuitive relationships

u1(2) = u1(1), u2(1) = u1(1)
k12

k21
,

u2(2) = u2(1)+ 1

k21
.

(12)

From these relations it follows that the mean times u(1),
u(2) and u to exit the domain starting respectively uniformly
distributed in state 1 or 2, and in state 1 and 2 with equilibrium
probability (p1, p2) = ( k21

k12+k21
, k12

k12+k21
), are

u(1) = u1(1)+ u2(1) = u1(1)

(
1 + k12

k21

)

u(2) = u2(2)+ u1(2) = u(1)+ 1

k21
,

u = p1u(1)+ p2u(2) = u(1)+ p2

k21
.

(13)

In the next sections we first study equation (10) in dimension
one, and then in dimension three. In dimension one the
equations are integrable and we obtain a full analytical
solution, which is very informative because it reveals
prominent features that also apply to the three-dimensional
case, where only asymptotic formulae are available. We will
restrict our discussion to u(1) and u1(1), the discussion for
u(2) and u is very similar.

3.1. Exit time in dimension one

When � = (0, L) is the one-dimensional interval with an
absorbing boundary at x = 0 in state 1 and reflecting boundary
at x = L, we obtain in the appendix for u1(1) the formula (see
equation (A.11))

u1(1) = τ1 − l1

l1 + l2

(
τ1 − L2

D1
f (l1 + l2)

)
, (14)

where l1 = k12 L2

D1
, l2 = k21 L2

D2
, τ1 = L2

3D1
is the MFPT in

state 1 without switching, and f (x) = coth
√

x√
x

− 1
x . Apart

from the overall scaling factor L2/D1, equation (14) shows that
u1(1) depends only on the effective parameters l1 and l2. The
asymptotic for u1(1) is

u1(1) =

⎧⎪⎪⎨
⎪⎪⎩

L2

D1
f (l1)+ O

(
l2

l1

)
, l2 � l1

τ1 + O

(
l1

l2

)
, l2 � l1,

(15)

and for l1 � 1 and l2 � √
l1 we have

u1(1) ≈ L2

D1

1√
l1

= L√
k12 D1

, l1 � 1,
√

l1 � l2.

(16)
In figure 2, we display u1(1) as a function of l1 and l2.
Interestingly, we find the counterintuitive result that the sojourn
time u1(1) is always smaller than the mean first passage time
τ1 to exit in state 1 without switching. In addition, when the
parameters D1, D2, and k21 are fixed, equation (16) shows that
u1(1) becomes arbitrarily small as k12 increases. This non-
intuitive behaviour deserves more attention and we understand
it as follows (see also [36]): for a ligand starting uniformly
distributed in state 1, the probability to be in the neighbourhood
of the absorbing boundary at x = 0 decreases quickly as
a function of time. However, after switching to state 2, the
distribution is re-homogenized and later on, after switching
back from state 2 to 1, the probability density around x = 0
is higher compared to the non-switching case. After returning
to state 1, the ligand starts in probability ‘closer’ to x = 0
and thus it exits in state 1 faster compared to the non-switching
case.

Considering that the sojourn time u1(1) can be arbitrary
small, we now explore how this affects the mean time u(1) to
exit starting initially in state 1. From equations (13) and (14)
we obtain (κ = D1/D2)

u(1) = u1(1)

(
1 + κ

l1

l2

)

= τ1 + l1

l2

(
L2

D1
f (l1 + l2)+ (κ − 1)u1(1)

)
, (17)

showing that u(1) � τ1 for κ � 1: the exit time cannot
decrease by switching to a state with a smaller diffusion

4
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Figure 3. The mean exit time u(1) obtained from equation (17) as a function of l1 and l2 for κ = D1/D2 = 0.1, and scaled by τ1. The graph
of u(1) initially decays steeply, while around and after the minimum it is quite flat. This strong initial dependency on the switching rates may
be a way to modulate the signalling time in biochemical systems.

constant. However, as we will show now, this is no longer
the case for κ < 1, where one can find switching rates such
that u(1) < τ1. Furthermore, if one switching rate is fixed
while the other is variable, the graph of u(1) as a function of
the variable rate has a minimum with a value that is smaller
than τ1. Indeed, using equation (17) for a given value of l2, the
small l1 expansion of u(1) is

u(1) = τ1 + l1

l2

(
L2

D1
f (l2)+ (κ − 1)τ1

)
+ O(l2

1),

showing that the initial slope ∂u
∂l1
(1) is negative for l2 > l̃2(κ),

where l̃2(κ) is the root of f (l2) + (κ − 1)/3 = 0. Together
with the increasing behaviour u(1) ∼ √

l1 for l1 → ∞, we
conclude that u(1) has a minimum smaller than τ1 as function
of l1 for l2 > l̃2(κ). In figure 3(a) we present u(1) as a function
of l1 for various fixed values of l2. In cellular systems, this may
correspond to a situation where the diffusion constants and the
backward rate k21 are determined, but the forward binding rate
k12 can be adjusted by changing the concentration of a reactant
partner. In figure 3(b) we plot u(1) as a function of l2 for given
l1 showing that u(1) also exhibits a minimum in this case.

From figure 3 we observe that the minimum u(1)m
decreases as switching becomes faster. To determine the lower
bound for u(1)m , we first consider the situation in figure 3(a)
where l2 and κ are fixed and u1 is a function of l1. The position
l1 = l1,m(l2, κ) of the minimum is found from ∂u(1)

∂l1
(1) = 0,

which leads to the equation (we use equation (17))

− l1
∂u1(1)

∂l1

(
1 + l2

l1κ

)
= u1(1). (18)

Using the asymptotic of u1(1) for large l1 + l2, given by
(τ̂ = 1/3)

u1(1) = L2

D1

(
l2

l1 + l2
τ̂ + l1

(l1 + l2)
√

l1 + l2

+ o

(
1

(l1 + l2)
√

l1 + l2

))
, (19)

we obtain from equation (18) that the position (l1,m, l2) of the
minimum for l2 large is determined by

l3/2
1,m = 2τ̂ (1 − κ)

κ
l2
2 . (20)

When l2 varies for fixed l1 and κ (corresponding to the situation
depicted in figure 3(b)), the minimum (l1, l2,m) is determined
by ∂u(1)

∂l2
= 0, which for large l1 leads to

l2
2,m = κ

τ̂ (1 − κ)
l3/2
1 . (21)

Comparing equation (20) with equation (21) shows that the
positions (l1,m, l2) and (l1, l2,m) are different, and thus, u(1)
does not have a local or global minimum, which would require
that (l1,m, l2) = (l1, l2,m). These results and the scaling laws
reflected in equations (20) and (21) share some similarities
with [40], where switching occurs between a diffusive and
a ballistic motion without orientational control. However,
our results differ from a ballistic motion with orientational
control, where a global minimum is obtained [43, 47]. Using
equation (20) (or equation (21)) we obtain for large switching
rates the asymptotic equations

u1(1)m = O(l−1/3
2 ), u2(1)m = τ2 + O(l−1/3

2 ),

u(1)m = τ2 + O(l−1/3
2 )

(22)

where τ2 = κτ1. Consequently, the lower bound for the exit
time u(1) is given by τ2, which is the mean first passage time
for a ligand diffusing all the time with the larger diffusion
constant D2. Surprisingly, but consistent, as u(1) approaches
τ2, the ligand spends all the time in state 2, where it cannot
exit. Figure 4(a) shows the minimum u1,m scaled by τ1 as
a function of l2 for various κ , and confirms the asymptotic
relation in equation (20) and the asymptotic behaviour u1,m →
τ2 for large l2. Figure 4(b) displays the corresponding sojourn
times u1(1)m/τ1 and u2(2)m/τ2 as a function of l2 for different
values of κ , showing that u1(1)m → 0 and u2(2)m → τ2 as
u(1)m → τ2. For κ < 1 exit is fastest if the ligand spends all
the time in state 2, while for κ > 1 exit is fastest if the ligand
spends all the time in state 1, and thus a limit situation occurs
for κ = 1. For κ = 1 the ligand exits in a minimal time u1 = τ1

by remaining in state 1, however, there is an additional strategy
to exit fast while spending most of the time hidden in the state
2: the strategy consists in choosing l1 as large as possible and
l2 = αl1, with α � 1. We have u(1) ≈ τ1 for α

√
l1 � 1, and

5
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Figure 4. Panel (a) shows the minimum u(1)m (scaled by τ1) of u(1), plotted as a function of l2 for various κ . The horizontal lines display the
values of κ and the continuous curves are calculated using equation (20). The graphs do not extend up to l2 = 0 because a minimum exists
only for l2 > l̃2(κ) (see text). Panel (b) shows the ratio u1(1)m/τ1 (curves below the horizontal line) and u2(1)m/τ2 (curves above) of the
sojourn times. The continuous curves are calculated using equation (20).

since u1(1)/u2(1) = α, it follows that the ligand spends only a
small fraction α/(1 + α) of the time in state 1.

In summary, we have found that the lower limit of u(1)
corresponds to a ligand diffusing all the time with maximal
diffusion constant, and interestingly, for κ � 1, this implies
that fast exit is achieved by diffusing most of the time in state
2, where exit is not possible. The exit time u(1) has no global
or even local minima for κ < 1, and the best strategy to exit
fast needs to be adapted to the given constraints. For example,
when k21 is the unbinding and k12 the forward binding rate,
then k21 usually depends on the local interaction potential,
while k12 can be modulated by changing the concentration
of the binding partner. Furthermore, as shown in figure 3,
the graph of u(1) around and past the minimum is quite flat,
and thus increasing switching to attain the minimum may
not be necessary, because a similar effect can already by
achieved at much slower rates. Moreover, because the graph of
u(1) decays steeply for small values l1 and l2, this behaviour
provides an efficient mechanism to modulate the activation
time, and thus cellular signalling.

3.2. Gated narrow escape in dimension three

We now study a switching ligand that can exit a general and
regular three-dimensional domain� through a small hole ∂�a

only in state 1. Without switching, the mean exit time in state
1 equals the NET τ1 ∼ |�|

4aD1
, where a is the length scale

characterizing the small hole ∂�a [15, 16, 18, 21]. Using the
dimensionless parameters and functions [21]

x̂ = x

a
, v1(x̂) = a D1

|�| u1(x, 1),

v2(x̂) = a D1

|�| u1(x, 2), l1 = k12a2

D1
, l2 = k21a2

D2
,

(23)
equation (10) are scaled to

�v1(x̂)− l1(v1(x̂)− v2(x̂)) = −|�̂|−1 (24)

�v2(x̂)+ l2(v1(x̂)− v2(x̂)) = 0, (25)

with the boundary conditions

v1(x̂) = ∂v2(x̂)

∂n
= 0, x̂ ∈ ∂�̂a

∂v1(x̂)

∂n
= ∂v2(x̂)

∂n
= 0, x̂ ∈ ∂�̂r.

Integrating equation (25) over the scaled domain �̂ gives for
the spatial averages

v1 = 1

|�̂|
∫
�̂

v1(x̂) dx̂ = 1

|�̂|
∫
�̂

v2(x̂) dx̂ = v2. (26)

Because exact solutions of equations (24) and (25) are not
available, we will study the effect of switching by deriving
an asymptotic expression for the mean sojourn time u1(1) =
|�|
aD1
v1 in various regimes of the two-dimensional parameter

space (l1, l2). We will explore, in particular, the four regions
l1 � 1, l2 = 0 and l2 � l1, l2 � l1, and finally l1 � l, l1 � l2.

3.2.1. The sojourn time u1(1) for l1 � 1. In the regime
l1 � 1 we use the regular expansions

v1(x̂) = v0
1(x̂)+ l1v

1
1(x)+ l2

1v
2
1(x)+ · · ·

v2(x̂) = v0
2(x̂)+ l1v

1
2(x)+ l2

1v
2
2(x)+ · · ·

to study equations (24) and (25). We obtain the sequence of
equations

�(v0
1(x̂)+ l1v

1
1(x))− l1(v

0
1(x̂)− v0

2(x̂))+ O(l2
1) = − 1

|�̂|
�(v0

2(x̂)+ l1v
1
2(x))+ l2(v

0
1(x̂)− v0

2(x̂))+ l1l2(v
1
1(x̂)

− v1
2(x̂))+ O(l2

1) = 0.

and in leading order

�v0
1(x̂) = − 1

|�̂| , (27)

�v0
2(x̂)− l2v

0
2(x̂) = −l2v

0
1(x̂). (28)

6
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The leading order v0
1(x̂) satisfies the usual NET equation

with solution v0
1(x̂) = τ̂ (x̂), where the NET function τ̂ (x̂)

is well approximated by its spatial average τ̂ ∼ O(1)
outside a boundary layer of the absorbing window (in scaled
coordinates the radius of the boundary layer is of order
1) [6, 13, 15, 16, 19–21]. The leading order term is v0

2(x̂) and
depends on l2. For l2 � 1, we approximate

v0
2(x̂) ≈ v0

1 = τ̂ , (29)

and in the limit l2 � 1, we have outside a boundary layer of
the absorbing window

v0
2(x̂) =

(
1 − 1

l2
�

)−1

v0
1(x̂) ≈ v0

1(x̂)+ O

(
1

l2

)
.

Because the first order correction v1
1(x̂) is solution of

�v1
1(x) = v0

1(x̂) − v0
2(x̂) and is bounded, we obtain for the

mean sojourn time

u1(1) = |�|
a D1

(τ̂ + O(l1)) ≈ τ1, l1 � 1 (30)

where τ1 = |�|
aD1
τ̂ is the NET in state 1. To obtain a more

physical interpretation of the asymptotic results we observe
that the effective parameters l1 = k12a2/D1 and l2 = k21a2/D2

involve the length a, which roughly characterizes the radius of
the boundary layer around the small hole. Roughly speaking,
l1 and l2 compare the switching times 1/k21 and 1/k21 to
the times a2/D1 and a2/D2 that a particle spends in the
boundary layer. For example, if (l1, l2) � 1, switching is
fast enough to affect the motion of the ligand while it diffuses
inside the boundary layer, while for (l1, l2) � 1 switching is
too slow. From these observations we obtain the following
interpretation: for l1 � 1, switching from state 1 to 2 is too
slow to affect the behaviour of the particle in state 1 while it is
inside the boundary layer, and the sojourn time u1(1) is not
changed compared to the NET τ1. For l2 � 1, the ligand
in state 2 explores a domain much larger than the boundary
layer, and thus the positional sojourn time u1(x, 2) is almost
constant. For l2 � 1, the ligand switches very fast from state
2 to state 1, and thus u1(x, 2) ≈ u1(x, 1).

3.2.2. The sojourn time u1(1) for l2 = 0. The condition l2 =
0 corresponds to the limit D2 → ∞ and not k21 → 0, since
the latter does not have a finite time u1(x, 2). The physical
situation corresponds to a ligand that becomes uniformly
distributed in � after switching to state 2. The solution of
equation (25) for l2 = 0 is v2(x̂) = v1 = const, which is
intuitive because fast diffusion in state 2 wipes out any initial
position dependency. From equation (24) we obtain for v1(x̂)

the equation

�v1(x̂)− l1v1(x̂) = −
(

1

|�̂| + l1v1

)
. (31)

Thus, v1(x̂) satisfies the narrow escape equation with a killing
rate l1 and an additional source term l1v1, which ensures that
the particle is not killed by switching to state 2, but reappears

uniformly redistributed in state 1, and it can only exit through
the absorbing hole.

For l1 � 1, the analysis of equation (31) is similar to
section 3.2.1 and gives in leading order u1(1) ≈ τ1. We shall
now focus on l1 � 1. Because the ligand becomes uniformly
distributed in state 2, the sojourn time u1(x, 1) depends on the
initial position x only if the distance to the absorbing hole is
small enough that the particle has a significant probability to
exit before switching. From this we conclude that the boundary
layer of u1(x, 1) (resp. v1(x̂)) necessarily shrinks to zero as
l1 → ∞. To estimate v1(x̂) near ∂�̂a for l1 � 1, we use
boundary layer analysis: because the boundary is regular, in
a local and orthogonal coordinate frame (ρ, x̂t ) centred at the
origin of the absorbing hole ∂�̂a, where ρ = −dist(P, ∂�̂)
and P = (ρ, x̂t ), equation (31) becomes

∂2

∂ρ2
v1(ρ, x̂t )+�x̂tv1(ρ, x̂t )−l1v1(ρ, x̂t ) = −

(
1

|�̂| +l1v1

)
.

Using the separation of variables, we obtain the boundary layer
expansion

vBL
1 (ρ, x̂t ) = A(x̂t)e

−√
l1ρ +

(
1

l1|�̂| + v1

)
, (32)

with �x̂t A(xt) = 0. To find A(x̂t) we use vBL
1 (0, x̂t ) = 0 for

x̂t ∈ ∂�̂a and get A(x̂t) = −( 1
l1 |�̂| + v1), and thus

vBL
1 (ρ, x̂t) ≈

(
1

l1|�̂| + v1

)
(1 − e−√

l1ρ). (33)

To determine v1, we integrate equation (31) and obtain the flux
condition

−1 =
∫
∂�̂a

∂v1(x̂)

∂nx
dSx = −

∫
∂�̂a

∂vBL
1 (0,xt)

∂ρ
dSx

≈ |∂�̂a|
(

1

l1|�̂| + v1

)√
l1, (34)

from which we find

v1 = 1

|∂�̂a|√l1

+ O

(
1

l1|�̂|
)
. (35)

We further remark that for l1 � 1, the local flux through ∂�̂a

is almost position independent, and given by

∂v1(x̂)

∂nx
≈ 1

|∂�̂a|
, (36)

which is in contrast with the usual NET flux [19, 20]. Finally,
the asymptotic result for the sojourn time is

u1(1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ1, l1 � 1

|�|
a D1|∂�̂a|√l1

= |�|
|∂�a|√D1k12

, l1 � 1

.

(37)
Similar to the one-dimensional case (see equation (16)), we
find that the sojourn time u1(1) shrinks to zero as l1 → ∞.
For a circular hole of radius a, using τ1 ≈ |�|

4aD1
[6], we get

u1(1) ≈ τ1
4

π
√

l1
, l1 � 1. (38)
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3.2.3. The sojourn time u1(1) for l2 � l1. When l2 � l1, we
sum equations (24) and (25) to get the equation

�(v1(x̂)+ ξv2(x̂)) = − 1

|�̂| , (39)

where ξ = l1
l2

� 1. Using a regular expansion of v1(x̂)

and v2(x̂) in the small parameter ξ we find in leading order
v0

1(x̂) = τ̂ (x̂), which gives

u1(1) ≈ τ1. (40)

Inserting v0
1(x̂) = τ̂ (x̂) into equation (25) leads back to

equation (28) for v0
2(x̂), which we have already discussed. To

give a physical interpretation, for l2 � l1, the ligand in state
2 explores an area that is much smaller than what it would
have explored in state 1 without switching, and therefore the
excursions to state 2 do not affect its behaviour in state 1, which
leads to u1(1) ≈ τ1.

3.2.4. The sojourn time u1(1) for l1 � 1 and l1 � l2.
When l1 � 1 and l1 � l2, we now show that the leading
order asymptotic for u1(1) is given by equation (37) found for
l1 � 1, l2 = 0. We rewrite equation (39) as

�(ηv1(x̂)+ v2(x̂)) = − η

|�̂| , (41)

where η = l2
l1

� 1 and introduce the function ϕ(x̂) defined by
v2(x̂) = v1 + η(ϕ(x̂)− v1(x̂)), which satisfies

�ϕ(x̂) = − 1

|�̂| , (42)

with boundary conditions

∂ϕ(x̂)

∂n
= ∂v1(x̂)

∂n
, x̂ ∈ ∂�̂a,

and
∂ϕ(x̂)

∂n
= 0, x̂ ∈ ∂�̂r.

Because v1 = v2, the spatial average of ϕ(x̂) is ϕ = v1.
Inserting v2(x̂) = v1 + η(ϕ(x̂) − v1(x̂)) into equation (24)
gives

�v1(x̂)− l1[v1(x̂)− v1 − η(ϕ(x̂)− v1(x̂))] = − 1

|�̂| , (43)

and using the regular expansion of v1(x̂) and ϕ(x̂) in the
small parameter η we recover for the leading order term
v0

1(x̂) equation (31). The first order expression for ϕ0(x̂) is
obtained by using v0

1(x̂) to evaluate the boundary conditions
of equation (42). Because the flux coming from v0

1(x̂) is of
order 1/|∂�̂a| ∼ 1 (see equation (36)), ϕ0(x̂) is of order 1,
and contrary to v0

1(x̂), it does not vanish for large l1. Finally,
from equation (43), v0

1(x̂) is a good approximation to v1(x̂) for
|v0

1(x̂)−v0
1 | � η|ϕ0(x̂)−v0

1(x̂)|. Because |ϕ0(x̂)−v0
1(x̂)| is of

order 1, while |v0
1(x̂)−v0

1 | = O( 1√
l1
) (see the analysis for l2 =

0), we obtain that v0
1(x̂) is a good first order approximation for√

l1 � l2. Finally, we obtain the expression

u1(1) ≈ |�|
a D1|∂�̂a|√l1

= |�|
|∂�a|√D1k12

,

l1 � 1,
√

l1 � l2, (44)

which also includes the case l2 = 0.

3.2.5. Summary of the asymptotic results for u1(1) and u(1).
By collecting all the previous asymptotic results for u1(1) we
summarize

u1(1) =
⎧⎨
⎩
τ1, l1 � 1 or l2 � l1

|�|
|∂�a|√D1k12

, l1 � 1 and
√

l1 � l2,
(45)

and from this we obtain for the GNET u(1) the asymptotic
expressions

u(1) =
(

1 + k12

k21

)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ1, l1 � 1 or l2 � l1

|�|
|∂�a|√D1k12

,

l1 � 1 and
√

l1 � l2.

(46)

In figure 5(a) we compare our asymptotic results for u1(1)with
simulation of Brownian motion together with the Gillespie
algorithm [48] to model switching (the simulations are
performed in a sphere of radius r = 30 with a circular hole
of radius a = 1). Figure 5(a) confirms our asymptotic formula
given in equation (38), and shows that u1(1) decreases with
increasing l1. Figure 5(b) displays the simulation results for
u(1) as a function of l1 for various l2 and κ = D1/D2 = 0.1.
Similar to our findings in dimension one (see figure 3(a)), u(1)
has a minimum attained at some value l1 > 0. Furthermore,
although we do not have a mathematical proof, it is reasonable
to assume that u(1) has the lower bound τ2 = κτ1 attained
asymptotically for very fast switching, similar to what we
found in dimension one.

Equation (45) shows that the sojourn time u1(1) differs
from the NET τ1 only if l1 � 1 such that switching is
fast enough to affect the particle motion inside the boundary
layer. In the range where u1(1) ≈ τ1, the GNET u(1) in
equation (46) is the NET τ1 divided by the probability p1 =

k21
k12+k21

to find the ligand in state 1, which corresponds to a
mean-field situation where switching and absorption proceed
independently, see also [36]. In this range the switching
dynamics can be approximated by a non-switching diffusion
process with an effective diffusion constant Deff = D1/p1. In
the range

√
l1 � l2, l1 � 1, u(1) is inversely proportional to

the surface of the hole, similar to the reaction-controlled NET
to a partially absorbing hole [21, 36]. This expression for u(1)
is very different from the mean-field result and indicates strong
correlations between switching and absorption. In general,
deviations from a mean-field situation occur if switching from
state 1 to 2 is fast enough to affect the diffusion of the particle
inside the boundary layer, and second, diffusion in state 2 has
to be such that the probability distribution inside the boundary
layer becomes re-homogenized.

8
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Figure 5. The ratios u1(1)/τ1 and u(1)/τ1 obtained from Brownian simulations as a function of l1 for different values l2 (marked by various
symbols). The results for u(1) in panel (b) are obtained with κ = 0.1. The Brownian simulations are performed in a sphere of radius r = 30
with an absorbing circular hole of radius a = 1. The continuous line in panel (a) is the asymptotic 4

π
√

l1
(see equation (38)), which is a good

approximation for l2 � 1 and l1 � 10.

4. Gated narrow escape with exit in both states

To complete the switching analysis, we now consider a
three-dimensional domain where the diffusing ligand can be
absorbed at ∂�a in both states. The boundary conditions

u1(x, 1) = u1(x, 2) = u2(x, 1) = u2(x, 2) = 0

for x ∈ ∂�a

∂u1(x, 1)

∂n
= ∂u1(x, 2)

∂n
= ∂u2(x, 1)

∂n
= ∂u2(x, 2)

∂n
= 0

for x ∈ ∂�r,

are identical in both states, and thus the solutions u2(x, 2)
and u2(x, 1) are obtained from u1(x, 1) and u1(x, 2) by
interchanging 1 ↔ 2. By subtracting and adding the two
equations in equation (10) we find that τ1(x) = u1(x, 1) +
l1
l2

u1(x, 2) and τ̃1(x) = u1(x, 1) − u1(x, 2) satisfy the
decoupled system of equations

D1�τ1(x) = −1, (47)

D1�τ̃1(x)− D1(l1 + l2)τ̃1(x) = −1 (48)

with boundary conditions

τ1(x) = τ̃1(x) = 0, x ∈ ∂�a

and
∂τ1(x)

∂n
= ∂τ̃1(x)

∂n
= 0, x ∈ ∂�r

where l1 = k12
D1

and l2 = k21
D2

. Thus, τ1(x) is the NET for
a Brownian ligand diffusing with diffusion constant D1, and
τ̃1(x) is the survival time in � with a uniform killing rate
D1(l1 + l2). To estimate τ̃1(x) for a small killing rate, we
approximate the inhomogeneous term in equation (48) by its
spatial average and obtain D1�τ̃1(x) = −1 + D1(l1 + l2)τ̃1,
where τ̃1 is the spatial average of τ̃1(x). The solution of this
equation is τ̃1(x) = (1 − D1(l1 + l2)τ̃1)τ1(x), and by taking
the spatial average and solving for τ̃1 we obtain

τ̃1 = τ1

1 + D1(l1 + l2)τ1
= τ1

1 + k12τ1 + k21τ2
, (49)

Figure 6. Comparison of the analytical value τ̃ predicted by
equation (49) with τ̃sim obtained from Brownian simulations with
10 000 diffusing particles in a sphere of radius r = 30 with a circular
absorbing hole of radius a = 1 (for the diffusion constant we used
D = 1). τ̃ in equation (49) is calculated using τ = |�|

4a .

where τ1 is the spatial average of τ1(x) and τ2 = D1
D2
τ1.

Although equation (49) was derived assuming a small killing
rate, interestingly, it also gives the correct asymptotic τ̃1 =
1/(D1(l1 + l2)) for a large killing rate. To clarify the
validity range of equation (49), we compare in figure 6 this
expression with the results of Brownian simulation, confirming
that equation (49) is a valid approximation for arbitrary values
k12τ1 + k21τ2.

Finally, expressing u1(x, 1) and u1(x, 2) as functions of
τ1(x) and τ̃1(x), we obtain

u1(x, 1) = l2

l1 + l2

(
τ1(x)+ l1

l2
τ̃1(x)

)
(50)

u1(x, 2) = l2

l1 + l2
(τ1(x)− τ̃1(x)) = u1(x, 1)− τ̃1(x). (51)

By interchanging 1 ↔ 2 we obtain for u2(x, 1) and u2(x, 2)
the expressions

u2(x, 1) = l1

l1 + l2
(τ2(x)− τ̃2(x)) = k12

k21
u1(x, 2), (52)

9
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u2(x, 2) = l1

l1 + l2

(
τ2(x)+ l2

l1
τ̃2(x)

)

= D1

D2

(
u1(x, 1)− l2 − l1

l2
u1(x, 2)

)
, (53)

where τ2(x) = D1
D2
τ1(x) and τ̃2(x) = D1

D2
τ̃1(x). Thus,

the linear transformation that relates (u1(x, 1), u1(x, 2) to
(u2(x, 1), u2(x, 2)) is

(
u2(x, 1)
u2(x, 2)

)
= D1

D2

(
0 l1

l2

1 − l2−l1
l2

) (
u1(x, 1)
u1(x, 2)

)
(54)

which has to be compared to the transformation in
equation (11) with absorption in state 1 only. Because
the boundary conditions in state 1 and 2 are identical, the
transformation in equation (54) can also mix solutions with
different initial states, which is not possible in equation (11).

Using formula (49) for τ̃1, the expression for the spatially
averaged sojourn times are

u1(1) = l2

l1 + l2

(
τ1 + l1

l2
τ̃1

)
= τ1

1 + k21τ2

1 + k12τ1 + k21τ2
, (55)

u1(2) = l2

l1 + l2

(
τ1 − τ̃1

)
= τ1

k21τ2

1 + k12τ1 + k21τ2
, (56)

and u2(1), u2(2) are obtained by interchanging 1 ↔ 2. The
mean time u(1) = u1(1) + u2(1) to exit the domain starting
uniformly distributed in state 1 is

u(1) = l2τ1 + l1τ2

l1 + l2
+ l1

l1 + l2
(τ̃1 − τ̃2)

= τ1
1 + (k12 + k21)τ2

1 + k12τ1 + k21τ2
. (57)

Finally, we observe that the switching results when the ligand
can exit in both states are not related to any boundary layer
effect, contrary to a ligand exiting in state 1 only.

5. Discussion and conclusion

We extended here the narrow escape time formulae to a
diffusing ligand randomly switching between two states 1 and
2 with diffusion coefficients D1 and D2 under consideration
of the sojourn times the ligand spends in the different states
before exiting. Therefore, we did not analyse the mean first
passage time equations, but rather the equations for the sojourn
times, which give a more accurate picture of the switching
dynamics. We obtained new formulae for the GNET when exit
is possible only in one state (see equation (46)) or in both states
(see equation (57)).

When the ligand can exit only in state 1, we find
unexpected phenomena: first, switching always decreases the
sojourn time in state 1 compared to the non-switching case,
and the sojourn time can asymptotically go to zero for fast
switching rates. Second, fastest exit is achieved by diffusing
all the time in the state with the largest diffusion constant.
For D1 > D2 this is not surprising, because the ligand
should stay all the time in the state where it can also exit.
However, for D2 > D1 this result is no longer intuitive,
because now fastest exit is achieved asymptotically for very
fast switching rates, where the rates have to be such that the

ligand spends most of the time ‘hidden’ in state 2, where
it cannot exit. We identify the effective parameters l1 and
l2 (see equation (23)) that determine this behaviour, and we
show that these phenomena occur if switching is so fast that
it effects the behaviour of the ligand in the boundary layer
around the absorbing window. Finally, for D2 > D1, if one
switching rate is constrained, one can adapt the other rate such
as to minimize the GNET. For example, if switching is due
to binding, the backward rate is usually constrained, while the
forward rate can be easily adjusted through the concentration
of the binding partner. Furthermore, as shown in figures 3
and 5, the behaviour of the GNET around the minimum is quite
flat, while it decays steeply for small switching rates. Thus, to
efficiently modulate activation time it seems unfavourable to
operate near the minimum, but rather in the fast decay region.

We end by sketching two applications in cellular biology
where our results for switching between two diffusive states
might be relevant. The first application concerns the search
time for a promoter DNA-site by a transcription factor
(TF), which alternates between a three-dimensional diffusion
in the nucleus and one-dimensional diffusion along the
DNA [49–51]. During its one-dimensional diffusion along
the DNA, in order to speed up diffusion in a rough energy
potential, it has been proposed that the TF alternates between
two states (conformations) [52–57]: in state 1, the TF has
a high affinity for the DNA and carefully scans the DNA
base pairs leading to a low diffusion constant, while in state
2 the affinity is much reduced leading to a faster diffusion,
however, in this state the TF cannot find its target. We showed
here that using a switching process, the search for a target
is faster, although the TF diffuses most of the time in state
2. This non-intuitive result further reveals that the effective
binding rate cannot be assumed to be proportional to the
fractional time spent in state 1, contrary to [56]. The second
application illustrates our finding that a diffusing ligand can
quickly activate a target, although it spends almost all of its
time in a state where it has no affinity for the target. This is
relevant if a ligand needs to activate a target in a state where it
is also prone to degradation. We found that a ligand can largely
avoid degradation and still perform a fast target activation by
switching between two states such that it spends most of its
time in the state 2, where it cannot be degraded nor activate the
target.
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Appendix. One-dimensional calculation

When � = (0, L) is the one-dimensional interval with an
absorbing boundary at x = 0 in state 1, and reflecting boundary
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at x = L, using the scaled variables,

x̂ = x

L
, l1 = k12L2

D1
, l2 = k21L2

D2
,

κ = D1

D2
, v1(x̂) = D1

L2
u1(x, 1),

v2(x̂) = D1

L2
u1(x, 2).

(A.1)

Equation (10) is given by

v′′
1 (x̂)− l1(v1(x̂)− v2(x̂)) = −1

v′′
2 (x̂)+ l2(v1(x̂)− v2(x̂)) = 0,

(A.2)

with boundary conditions v1(0) = v′
1(1) = v′

2(0) = v′
2(1) =

0. Integrating the second equation over the scaled interval
(0, 1) shows that the spatial averages satisfy the relationship
(see equation (12))

v1 =
∫ 1

0
v1(x̂) dx̂ =

∫ 1

0
v2(x̂) dx̂ = v2, (A.3)

and integration of the first equation provides the compatibility
condition v′

1(0) = 1. When l1 = 0, the solution v1(x̂) is the
scaled mean first passage time

τ (x̂) = 1
2 x̂(2 − x̂) (A.4)

with spatial average

τ̂ =
∫ 1

0
τ (x̂) dx̂ = 1

3 . (A.5)

To proceed in deriving the solution of equations (A.2) we sum
the two equations and obtain v′′

1 (x̂)+ l1
l2
v′′

2 (x̂) = −1, for which
the solution is

v1(x̂)+ l1

l2
v2(x̂) = τ̂ (x̂)− τ̂ +

(
1 + l1

l2

)
v1, (A.6)

where we used the boundary conditions for v1(x̂) and v2(x̂)
and v1 = v2. By inserting v2(x̂) as a function of v1(x̂) into the
first equation in (A.2) we find that ψ(x̂) = v1(x̂)− v1 satisfies

ψ ′′(x̂)− (l1 + l2)ψ(x̂) = −1 − l2(τ̂ (x̂)− τ̂ ), (A.7)

with the boundary conditionsψ ′(0) = 1 and ψ ′(1) = 0. Using
the variation of constant method we obtain the solution

ψ(x̂) = l2

l1 + l2
(τ̂ (x̂)− τ̂ )+ l1

l1 + l2

×
(

cosh
√

l1 + l2 − cosh(
√

l1 + l2(1 − x̂))√
l1 + l2 sinh

√
l1 + l2

− f (l1 + l2)

)
(A.8)

where the function

f (x) = coth
√

x√
x

− 1

x
(A.9)

is monotonically decreasing from τ̂ = 1/3 at x = 0 towards
0 for x → ∞. Thus, since v1 = −ψ(0) and v1(x̂) =
ψ(x̂)− ψ(0), we obtain

u1(x, 1) = L2

D1
v1(x̂) = L2

D1

(
l2

l1 + l2
τ̂ (x̂)+ l1

l1 + l2

× cosh
√

l1 + l2 − cosh(
√

l1 + l2(1 − x̂))√
l1 + l2 sinh

√
l1 + l2

)

= l2

l1 + l2
τ1(x)+ L2

D1

l1

l1 + l2

× cosh
√

l1 + l2 − cosh(
√

l1 + l2
L−x

L )√
l1 + l2 sinh

√
l1 + l2

(A.10)

u1(1) = L2

D1
v1 = τ1 − l1

l1 + l2

(
τ1 − L2

D1
f (l1 + l2)

)
(A.11)

where τ1(x) = L2

D1
τ̂ (x̂) and τ1 = L2

D1
τ̂ .
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